基礎歯科学入門 コーディネーター:解剖学講座・機能形態学分野 藤村朗教授 サブコーディネーター: 生理学講座・病態解析学分野 成田欣弥講師

担当講座(分野):解剖学講座(機能形態学分野)、解剖学講座(発生生物·再生医学分野)

生理学講座 (病態生理学分野)、生化学講座 (細胞情報科学分野)、医療工学講座、

口腔医学講座 (予防歯科学分野)、情報科学科 (数学分野)

第1学年 前期

講義

前期 22.5 時間

教育成果 (アウトカム) (講義)

生命科学の基礎となる数学、物理学、化学、生物学の基礎的知識を習得と応用力の育成によって、歯学部 専門科目を理解するための基盤を形成する。

事前学修時間(30分)

シラバスに記載されている次回の授業内容を確認し、教科書等を用いて事前学修(予習)を行うこと。各 授業に対する事前学修の時間は最低30分を要する

講義日程

冊我 口 任			
月日	担当者	ユニット名 一般目標	到達目標
4月27日(月)4限	成田欣弥講師 (生理学講座病 態生理学分野)	オリエンテーション 歯科臨床・研究における基礎歯科学の重要性 を理解する。	 講義の進行を説明できる。 歯科医学を理解するうえでの基礎歯科学の位置づけを説明できる。 基礎歯科学を理解する為の数学、化学、生物学、物理学の重要性を説明できる。
5月11日(月)4限	成田欣弥講師 (生理学講座病態生理学分野)	単位・計算・関数とグ ラフ 生命現象を理解するた めの数学的処理ができ る。	 長さ、重さ、体積の単位を説明できる。 基本的な四則演算ができる。 小数や分数の計算ができる。 基本的な比例、指数、対数を説明できる。 比例や指数の計算ができる。 比例や指数のグラフを描くことができる。 具体的な生命現象に当てはめて応用できる。
5月18日(月)4限	客本齊子准教授 (生化学講座細 胞情報科学分野)	化学式・官能基 生体を構成する化合物 やその官能基を理解す る。	 生体を構成する元素を列挙できる。 生体における重要な化合物を理解する。 主要な官能基を列挙できる。 化学反応を官能基で説明できる。 具体的な生命現象に当てはめて応用できる。
5月25日(月)4限	客本齊子准教授 (生化学講座細 胞情報科学分野) 佐々木かおり助 教 (医療工学講座)	イオン・化学結合 生体や歯科材料を構成 する物質の成り立ちを 理解する。	 原子のイオン化を説明できる。 主要な化学結合を列挙できる。 生体を構成する物質の化学結合を説明できる。 歯科材料における化学結合を説明できる。

		ユニット名	
月日	担当者	ユーツト名 一般目標	到達目標
6月1日(月)4限	佐々木かおり助 教 (医療工学講座)	電気の性質や単位および具体的な利用法を理解する。	 1. 電気の概念を説明できる。 2. 電気の単位を説明できる。 3. 具体的な計算ができる。 4. 歯科医学における具体的な応用法を説明できる。
6月5日(金)	成田欣弥講師 客本齊子准教授 佐々木かおり助 教	到達度評価試験 I これまでに学習した内容を理解する。	1. 講義で理解できなかった項目を列挙する。 2. 学習方法を説明できる。 3. 理解した項目を身に付ける。
6月8日(月)	佐々木かおり助 教 (医療工学講座)	エネルギー エネルギーの概念や単 位および具体的な利用 法を理解する。	 エネルギーの概念を説明できる。 エネルギーの単位を説明できる。 具体的な計算ができる。 歯科医学における具体的な応用法を説明できる。
6月12日(金)4限	客本齊子准教授 (生化学講座細 胞情報科学分野)	物質量 様々な化合物の物質量 をモル濃度で示すこと を理解する。	 物質量の概念を説明できる。 モル濃度を用いて具体的な物質量を示すことができる。 モル濃度の計算ができる。 具体的な生命現象に当てはめて応用できる。
6月15日(月)4限	成田欣弥講師 (生理学講座病 態生理学分野)	水溶液 水溶液の浸透圧や水素 イオン濃度について理 解する。	 溶液の浸透圧を説明できる。 水素イオン濃度を説明できる。 pHの概念を説明できる。 具体的な生命現象に当てはめて応用できる。
6月19日(金)4限	客本齊子准教授 成田欣弥講師 佐々木かおり助 教	到達度評価試験 II これまでに学習した内容を理解する。	 講義で理解できなかった項目を列挙する。 学習方法を説明できる。 理解した項目を身に付ける。
6月22日(月)4限	成田欣弥講師 (生理学講座病 態生理学分野)	電気生理 生体における電気生理 学的反応を理解する。	1. 生体における電気現象を説明できる。 2. 具体的な生命現象に当てはめて応用できる。 る。
6月29日(月)4限	佐々木かおり助 教 (医療工学講座)	熱 熱の概念や性質および 具体的な利用法を理解 する。	 熱の概念を説明できる。 熱に関わる物理量と単位を説明できる。 熱に関わる主要な性質を説明できる。 歯科医学における具体的な応用法を説明できる。
7月3日(金)4限	飯田安保講師 (情報科学科数学 分野)	統計の基礎 平均、標準偏差、標準 誤差の計算ができる。	1. 統計の基本的な概念を説明できる。 2. 平均、標準偏差、標準誤差の計算ができる。 3. 統計処理結果のグラフを描くことができる。

月日	担当者	ユニット名 一般目標	到達目標
7月6日(月)	岸光男准教授 (口腔医学講座 予防歯科学分野)	臨床統計 歯科医学に必要な統計 処理ができる。	 保健医療における統計学の意義を説明できる。 健診データから平均、標準偏差、標準誤差の計算ができる。 目的に応じた集計グラフを描くことができる。 歯科医学における統計処理の応用を理解する。
7月10日(金)4限	成田欣弥講師 佐々木かおり助 教 飯田安保講師 岸光男准教授	到達度評価試験Ⅲ これまでに学習した内容を理解する。	1. 講義で理解できなかった項目を列挙する。 2. 学習方法を説明できる。 3. 理解した項目を身に付ける。

成績評価方法

到達度評価試験 I (10%)、II (10%)、III (10%)、前期試験 (70%) の合計で 60%以上を合格とする。

オフィスアワー

担当教員	方式	曜日	時間帯	備考
藤村朗	В-і	月~金		時間が空いていれば随時可能
				e-mail でも対応可:
				akifuji@iwate-med.ac.jp
成田欣弥	В-і	月~金		時間が空いていれば随時可能
				e-mail でも対応可:
				knarita@iwate-med.ac.jp
	В-і	月~金		時間が空いていればいつでも可
客本齊子				e-mail でも対応可
				kyakumot@iwate-med.ac.jp
	В-і	月~金		時間が空いていれば随時可能
佐々木かおり				e-mail でも対応可
				sskkaori@iwate-med.ac.jp
岸光男	В-і	月~金		不在の時は教室員に伝言の上、必要があればア
				ポイントをとること。
飯田安保	В-і	月~金		自由に質問に来てください。時間の許す限り対
				応します。事前に連絡があると確実です。内容
				によってはメールでの質問も可能です。
				研究室:東研究棟2階225室
				e-mail: yiida@iwate-med.ac.jp 内線 5041